\qquad
\qquad
Define the following vocabulary words:

1. Absolute maximum -
2. Absolute minimum -
3. Axis of symmetry -
4. Quadratic -
5. Symmetric -
6. Vertex -
7. X-intercepts or Zeros -

Calculate the $1^{\text {st }}$ and $2^{\text {nd }}$ differences. Then identify the type of function as linear or quadratic.
8.

x	\boldsymbol{y}	First	
0		Differences	Second
0	1		Differences
1	-1		
2	-7		
3	-17		
4	-31		
4			

9. \qquad

Graph each function. Identify the vertex. Then, draw and label the axis of symmetry.
10. $f(x)=-x^{2}+4$ Vertex: \qquad 11. $f(x)=x^{2}-2 x-3$

Vertex: \qquad

x	$f(x)$
-2	
-1	
0	
1	
2	

x	$f(x)$
-1	
0	
1	
2	
3	

Fill in the answers in the box to the right.

12. A tennis ball is dropped from a height of 150 feet. Its initial velocity is 0 feet per second. The function $\mathrm{g}(\mathrm{t})=-16 \mathrm{t}^{2}+150$ represents the height of the tennis ball, $\mathrm{g}(\mathrm{t})$, t seconds after it was dropped. Use the graph to answer the questions.

Time (seconds)

Absolute Max or Min: \qquad
Zeros: \qquad
Y-intercept: \qquad

Domain of the Graph: \qquad
Domain of this Problem: \qquad

Range of the Graph: \qquad Range of this Problem: \qquad

Axis of Symmetry: \qquad
2 Symmetric Points (other than the x-intercepts):
\qquad

Write each quadratic function in factored form. Decide if the parabola opens up or down.
13. $f(x)=(-5 x+10)(x-2)$

Up or Down? \qquad Up or Down? \qquad Up or Down? \qquad

Determine whether the quadratic function opens up or down and if it has an absolute maximum or minimum. Then, find the x - intercepts or zeros.
16. $f(x)=(x-6)(x+3)$
Up or Down? \qquad
17. $f(x)=x(x-9)$
18. $f(x)=2(x+2)(2-x)$
Up or Down? \qquad Up or Down? \qquad
Max or Min? \qquad Max or Min? \qquad Max or Min? \qquad
X-int: \qquad X-int: \qquad X-int: \qquad
19. Write a quadratic function in factored form that opens down and has x-intercepts $(4,0)$ and $(-2,0)$.
20. Write a quadratic function in factored form that opens $u p$ and has x -intercepts $(9,0)$ and $(6,0)$.

Write a function that represents the vertical motion described in each problem situation.

$$
h(t)=-16 t^{2}+v_{0} t+h_{0}
$$

21. A catapult hurls a pineapple from a height of 30 feet at an initial velocity of 85 feet per second.
22. A basketball is thrown from a height of 5 feet at an initial velocity of 45 feet per second.
23. An object is thrown from an initial height of 4 feet at an initial velocity of 32 feet per second. The function $h(t)=-16 t^{2}+32 t+4$ represents the situation and is graphed below.
a. What is the height of the object at 0.25 seconds?
b. When will the object reach a height of 11 feet for the $2^{\text {nd }}$ time?
c. What is the maximum height of the object?
d. After how many seconds does the object land?
e. What is the domain for this problem?

f. What is the range for this problem?

Determine the axis of symmetry of each parabola.

24. The x-intercepts of a parabola are $(3,0)$ and $(9,0)$.
25. Two symmetric points on a parabola are (5, $4)$ and (7,4).
26. The x-intercepts of a parabola are $(-10,0)$ and $(2,0)$.
27. Two symmetric points on a parabola are (-4, $2)$ and (8,2).

Determine the vertex of each parabola. Hint: If the axis of symmetry isn't given, use the points given to determine the axis of symmetry.
28. $f(x)=x^{2}+2 x-3$
axis of symmetry: $x=-1$
29. $f(x)=-x^{2}+6 x$
x-intercepts $:(0,0)$ and $(6,0)$
30.

$$
f(x)=x^{2}+4 x-4
$$

two symmetric points on the parabola $(-6,8)$ and $(2,8)$

