Define the following vocabulary words:

- 1. Absolute maximum -
- 2. Absolute minimum -
- 3. Axis of symmetry -
- 4. Quadratic -
- 5. Symmetric –
- 6. Vertex -
- 7. X-intercepts or Zeros -

Calculate the 1st and 2nd differences. Then identify the type of function as linear or quadratic.

9.

- 8. x У First Differences Second 0 1 Differences 1 -1 2 -7 3 -17 -31 4
- x У First Differences Second -2 0 Differences 1 1 4 2 7 3 10 4

Graph each function. Identify the vertex. Then, draw and label the axis of symmetry.

Fill in the answers in the box to the right.

12. A tennis ball is dropped from a height of 150 feet. Its initial velocity is 0 feet per second. The function $g(t) = -16t^2 + 150$ represents the height of the tennis ball, g(t), t seconds after it was dropped. Use the graph to answer the questions.

Absolute Max or Min:	
Zeros:	
Y-intercept:	
Domain of the Graph:	
Domain of this Problem:	
Range of the Graph:	
Range of this Problem:	
Axis of Symmetry:	
2 Symmetric Points (other than the x-inter	cepts)

Write each quadratic function in factored form. Decide if the parabola opens up or down.

13. $f(x) = (-5x + 10)(x - 2)$	14. $f(x) = (3x + 15)(x + 5)$	15. $f(x) = x^2 + 3x$
Up or Down?	Up or Down?	Up or Down?

Determine whether the quadratic function opens up or down and if it has an absolute maximum or minimum. Then, find the x- intercepts or zeros.

16. $f(x) = (x - 6)(x + 3)$	17. $f(x) = x(x - 9)$	18. $f(x) = 2(x + 2)(2 - x)$
Up or Down?	Up or Down?	Up or Down?
Max or Min?	Max or Min?	Max or Min?
X-int:	X-int:	X-int:

19. Write a quadratic function in factored form that *opens down* and has x-intercepts (4, 0) and (-2, 0).

20. Write a quadratic function in factored form that *opens up* and has x-intercepts (9, 0) and (6, 0).

Write a function that represents the vertical motion described in each problem situation.

```
h(t) = -16t^2 + v_0 t + h_0
```

- 21. A catapult hurls a pineapple from a height of 30 feet at an initial velocity of 85 feet per second.
- 22. A basketball is thrown from a height of 5 feet at an initial velocity of 45 feet per second.

- 23. An object is thrown from an initial height of 4 feet at an initial velocity of 32 feet per second. The function $h(t) = -16t^2 + 32t + 4$ represents the situation and is graphed below.
- a. What is the height of the object at 0.25 seconds?
- b. When will the object reach a height of 11 feet for the 2nd time?
- c. What is the maximum height of the object?
- d. After how many seconds does the object land?
- e. What is the domain for *this problem*?
- f. What is the range for *this problem*?

Determine the axis of symmetry of each parabola.

- 24. The x-intercepts of a parabola are (3, 0) and (9, 0).
- 26. Two symmetric points on a parabola are (5, 4) and (7, 4).

- 25. The x-intercepts of a parabola are (-10, 0) and (2, 0).
- 27. Two symmetric points on a parabola are (-4, 2) and (8, 2).

Determine the vertex of each parabola. Hint: If the axis of symmetry isn't given, use the points given to determine the axis of symmetry.

28.
$$\begin{aligned} f(x) &= x^2 + 2x - 3 \\ axis \ of \ symmetry : x &= -1 \end{aligned}$$
 29.
$$\begin{aligned} f(x) &= -x^2 + 6x \\ x - intercepts : (0,0) \ and \ (6,0) \end{aligned}$$

30.
$$f(x) = x^{2} + 4x - 4$$

two symmetric points on the parabola (-6,8) and (2,8)