\qquad
\qquad

Transform means to change.
Transformations change the basic quadratic function, $y=x^{2}$, into other quadratic functions by:

1) Moving (or translating) the graph
2) Flipping (or reflecting) the graph
3) Stretching or shrinking (or dilating) the graph

Moving or Translating the Graph

$f(x)=x^{2}+k \quad \Rightarrow \quad$ the graph is vertically translated by k units.
If $k>0$, the graph moves UP k units.
If $k<0$, the graph moves DOWN k units.
$f(x)=(x \pm h)^{2} \quad \Rightarrow \quad$ the graph is horizontally translated by h units.
$(x-h)$ means the graph moves to the RIGHT h units.
$(x+h)$ means the graph moves to the LEFT h units.

Flipping or Reflecting the Graph

$f(x)=x^{2} \quad \Rightarrow \quad f(x)=-x^{2}$
The graph is reflected over the X-AXIS.
The parabola looks like it is flipped upside down.
$f(x)=x^{2} \quad \Rightarrow \quad f(-x)=(-x)^{2}$
The graph is reflected over the Y-AXIS.
It produces the same graph as $f(x)=x^{2}$. The function does not change since squared values are always positive.

Dilating the Graph

$f(x)=a x^{2} \quad \Rightarrow \quad$ the graph is dilated vertically by a factor of a.
If $a>1$, the graph is stretched or becomes narrower by a dilation factor of a.
If $0<a<1$, the graph is shrunk or becomes wider by a dilation factor of a.

Vertical translation.

The graph $y=x^{2}$ being horizontally translated 2 units left
to $y=(x+2)^{2}$ and 1 unit right to $y=(x-1)^{2}$

Dilation of $y=x^{2}$ to $y=3 x^{2}$ and $y=\frac{1}{2} x^{2}$

