\qquad
\qquad Adding and Subtracting Polynomials

A term is a real number, a variable, or the product of a real number and a variable. Terms are separated by + or - signs.
Examples: $x=78 x^{2}$

A coefficient is a number that is multiplied by a variable.

$$
\begin{array}{ll}
9 x^{3} & \text { Coefficient: } 9 \\
4 x+3 & \text { Coefficient: } 4
\end{array}
$$

A constant is a number on its own.
7 Constant: 7
$5 x+2 \quad$ Constant: 2

A polynomial is a mathematical expression that involves the sum of terms consisting of coefficients multiplied by 1 or more variables with whole number exponents.
A polynomial in one variable is of the form $a_{1} X^{\mathrm{k}}+a_{2} x^{\mathrm{k}-1}+\ldots a_{\mathrm{n}} X^{0}$, where a_{n} is any real number and k is a whole number exponent ($0,1,2,3 \ldots$...).
Examples:
$2 x+12$
$x^{2}-3 x$
$5 x^{6}+7 x^{2}-8$

A polynomial consisting of $\mathbf{1}$ term is a monomial.
A polynomial consisting of 2 terms is a binomial.
A polynomial consisting of 3 terms is a trinomial.

The polynomial $m^{3}+8 m^{2}-10 m+5$ has $\underline{4}$ terms.

$\mathbf{1}^{\text {st }}$ term:	m^{3}	Variable:	m
Coefficient of $\boldsymbol{m}^{\mathbf{2}}:$	8	Highest exponent:	3
Constant:	5		

Identify the terms and coefficients of each polynomial.

1. $-2 x^{2}+100 x$

Terms: $\quad-2 x^{2}$ and $100 x$
Coefficients: $\quad-2$ and 100
2. $x^{2}+4 x+3$

Terms: $\quad x^{2}, 4 x$, and $3 \quad$ Coefficients: 1 and 4
3. $4 m^{3}-2 m^{2}+5$

Terms: $\quad 4 m^{3},-2 m^{2}$, and $5 \quad$ Coefficients: 4 and -2

The degree of a term is its exponent.
$\begin{array}{ll}5 x & \text { Degree: } 1 \\ 4 & \text { Degree: } 0\end{array}$
The degree of a polynomial is equal to the largest exponent.
Example: $\quad 3 x^{4}-2 x^{3}+6 x^{2}-7 x+9$
Degree: 4
A polynomial written in standard form means the degree of its monomials decreases from left to right.
Example: $\quad x^{4}-2 x^{3}+4 x^{2}+3 x-8$
Always write polynomials in standard form!

Polynomial	Degree	Classification Using Degree	Number of Terms	Classification Using the Number of Terms
-6	0	Constant	1	Monomial
$125 p$	1	Linear	1	Monomial
$-13 s+6$	1	Linear	2	Binomial
$-6 x^{2}+4 x$	2	Quadratic	2	Binomial
$4 x^{2}+7 x+3$	3	Quadratic	3	Trinomial
$2 x^{3}$	3	Cubic	1	Monomial
$78 j^{3}-3 j$	4	Fourth degree	3	Binomial
$8 x^{4}-2 x^{3}+3 x$			Trinomial	

Exit Slip

Ali says that $3 x^{-2}+4 x-1$ is a polynomial of degree 1 because 1 is the greatest exponent and it is a trinomial because it has 3 terms. Luke disagrees and says that it is not a polynomial at all because the power of the $1^{\text {st }}$ term is not a whole number. Who is correct? Why?

Luke is correct. The exponent, -2 , is not a whole number so the expression is NOT a polynomial. Since it is not a polynomial, it cannot be classified as a trinomial.

Describe why each expression is not a polynomial.

1. $\frac{4}{x}$
2. \sqrt{x}
$\frac{4}{x}=4 x^{-1}$ and exponents cannot be negative. $\quad \sqrt{x}=4 x^{1 / 2}$ and exponents cannot be fractions.
