

Learning Goals:

To factor polynomials by determining the (GCF) greatest common factor. To factor trinomials using multiplication tables.

In this lesson, we will take a quadratic equation in standard form and rewrite it in <u>factored form</u>. $x^2 + 5x + 6 \rightarrow (x + 2)(x + 3)$

PROBLEM 1 – "What About the Other Way Around?" (Page 732)

Factoring Out the (GCF) Greatest Common Factor

To factor out the greatest common factor, simply use the **Distributive Property** in reverse. $3(x + 5) = 3x + 15 \iff 3x + 15 = 3(x + 5)$

<u>Steps</u>

- 1) Find the GCF of all the polynomial's terms, if possible.
- 2) Divide each term by the GCF.
- 3) Rewrite the polynomial as a product of the GCF and the polynomial's factors (the result of dividing the polynomial by the GCF).
- 1. Factor out the greatest common factor for each polynomial, if possible.

a.	4 <i>x</i> + 12 GCF: 4	d.	$x^3 - 5x$
	$\frac{4x}{4} + \frac{12}{4} = x + 3$ $4(x + 3)$		
b.	$3x^2 - 9x - 3$	e.	- <i>x</i> - 7

c. 2x - 11 **f.** $5x^2 - 10x + 5$

2. How can you check to see if you factored out the GCF correctly?

Use the Distributive Property to find the standard form of the polynomial. $5(x^2 - 2x + 1) = 5(x^2) + 5(-2x) + 5(1) = 5x^2 - 10x + 5 \checkmark$

PROBLEM 2 - "Factoring Trinomials" (Page 733)

Factoring Trinomials Using Multiplication Tables

<u>Steps</u>

- 1) Create a 2 x 2 multiplication table.
- 2) Write the first term (x^2) of the trinomial in the top left corner of the table.

- 3) Write the constant in the bottom right corner.
- 4) List all the factors of the constant.
- 5) Find the sum of each factor pair.
- 6) Determine which sum is equal to the middle term (x) of the trinomial.
- 7) Write the factor pair of that sum along with the variable in the two empty spaces in the table.

Factor Pairs of 4

Factor Pairs of 9

Sum

Sum

Sum

- 8) Outside the table, write either the variable and/or number combination that make up the entries in the multiplication table. These are your binomial factors.
- 9) Rewrite the polynomial as a product of binomial factors $(x 1^{st} factor)(x 2^{nd} factor)$.

1. Write the trinomial as the product of the two factors.

 $x^2 + 7x + 6 =$

	x	+6	Factor Pairs of 6	Sum
x	<i>x</i> ²	6 <i>x</i>	1 and 6 2 and 3	7 5
+1	1x	6		

 $x^2 + 7x + 6 = (x + 1)(x + 6)$

2. Factor each trinomial.

a. $x^2 + 5x + 4 =$

 $x^2 + 5x + 4 =$ _____

b.
$$x^2 - 6x + 9 =$$

 $x^2 - 6x + 9 =$ _____

c. $x^2 + 5x - 6 =$

Factor Pairs of -6

 $x^2 + 5x - 6 =$ _____

3. SKIP this problem!

- 4. If $x^2 + 10x + 16 = (x + 2)(x + 8)$, then EXPLAIN WHY the other factor pairs of 16 do not work?
 - a. (1)(16)

<i>x</i> ²	
	16

b. (4)(4)

5. Use multiplication tables to factor each trinomial.

a. $x^2 + 9x + 20 =$

b. $x^2 + 11x + 18 =$

Factor Pairs of _____ Sum

