Algebra 1: 12.3 Guided Notes More Practice Factoring Polynomials

Learning Goal:

To factor trinomials with a leading coefficient ≠ 1 using the "slide and divide" method.

In this lesson, we will take a quadratic equation with a leading coefficient $\neq 1$ and rewrite it in standard form. $3x^2 - 7x - 6 \rightarrow (3x + 2)(x - 3)$

Factoring Trinomials Using the "Slide and Divide" Method

Steps

- 1) Factor out the GCF, if possible.
- 2) Verify the leading coefficient (a) \neq 1.
- 3) SLIDE the leading coefficient to the back of the polynomial and multiply it by the constant (ac).
- 4) Rewrite the polynomial without the leading coefficient and replace the constant with the product of the leading coefficient and the constant.
- 5) Factor the polynomial using a multiplication table.
- 6) Rewrite the polynomial as a product of binomial factors.
- 7) DIVIDE the last term of each binomial factor by the leading coefficient (a).
- 8) Reduce the fractions, if possible.
- 9) For fractions that remain, SLIDE the denominator in front of the first term of the binomial factor.

Example 1: $3x^2 + 7x + 2$

<u>Steps</u>

- 1) There is no GCF.
- 2) $3 \neq 1$
- 3) $3 \cdot 2 = 6$
- 4) $x^2 + 7x + 6$

(3 is no longer the leading coefficient and the constant term is the product of $3 \bullet 2$)

5)

	\boldsymbol{x}	+6
x	x ²	6x
+1	1x	6

Factor Pairs of 6	Sum
1 and 6	7
2 and 3	5

6)
$$x^2 + 7x + 6 = (x + 1)(x + 6)$$

7)
$$\left(x+\frac{1}{3}\right)\left(x+\frac{6}{3}\right)$$

8)
$$\left(x+\frac{1}{3}\right)(x+2)$$

$$\left(\frac{6}{3} \text{ reduces to } 2\right)$$

9)
$$3x^2 + 7x + 2 = (3x + 1)(x + 2)$$

Example 2: $3x^2 + 14x + 8$

<u>Steps</u>

Example 3: $6t^2 + 4t - 2$

<u>Steps</u>