\qquad

Learning Goals:

To find the solutions to quadratic equations using factoring.
To graph the solutions to a quadratic equation.

Notes
Zero Product Property states \qquad .

$$
\text { If } a b=0, \text { then } a=0 \text { or } b=0 .
$$

PROBLEM 1 - "Roots of Quadratic Equations" (Page 744)

1. Use the Zero Product Property to determine the solutions of the quadratic equation $x^{2}-4 x-5=0$. Then, check your solutions by substituting back into the original equation.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

2. Let's examine the quadratic equation $0=x^{2}-4 x-5$. (Page 745)
a. Graph both sides of the quadratic equation on the coordinate plane shown.
b. SKIP
c. Identify the vertex, x - and y-intercepts, and the axis of symmetry. y-intercept: \qquad
x-intercept(s): \qquad
axis of symmetry: \qquad
vertex: \qquad

The \qquad are the solutions to the quadratic equation, a.k.a the \qquad because you set the quadratic equation equal to zero and solve for x. The x-intercepts also indicate where the graph crosses the x-axis and are also referred to as the \qquad .

Determine the roots of each quadratic equation. (Page 746)
3. $x^{2}-8 x+12=0$
4. $x^{2}-5 x-24=0$
5. SKIP
6. SKIP
7. $x^{2}+8 x=-7$
8. $x^{2}-5 x=13 x-81$
9. $3 x^{2}-22 x+7=0$
10. SKIP

PROBLEM 2 - "More Practice" (Page 749)
Calculate the zeros of each quadratic function, or the roots of each quadratic equation, if possible.

1. SKIP
2. $f(x)=x^{2}-11 x+12$
3. SKIP
4. $2 x^{2}+4 x=0$
5. $\frac{2}{3} x^{2}-\frac{5}{6} x=0$
