

Learning Goals:

To find the solutions to quadratic equations using factoring. To graph the solutions to a quadratic equation.

Notes

Zero Product Property states _____

If ab = 0, then a = 0 or b = 0.

PROBLEM 1 - "Roots of Quadratic Equations" (Page 744)

1. Use the Zero Product Property to determine the solutions of the quadratic equation $x^2 - 4x - 5 = 0$. Then, check your solutions by substituting back into the original equation.

`	т./ • л	1		4 =	
2.	Let's examine the	quadratic equ	$ation 0 = x^2 - x^2$	4x – 5.	(Page 745)
					\ U /

a. Graph both sides of the quadratic equation on the coordinate plane shown.

- b. SKIP
- c. Identify the vertex, x- and y-intercepts, and the axis of symmetry.

The ____ _____ are the solutions to the quadratic equation, a.k.a the ____ because you set the quadratic equation equal to zero and solve for x. The x-intercepts also indicate where the graph crosses the x-axis and are also referred to as the _____.

Determine the roots of each quadratic equation. (Page 746)

3. $x^2 - 8x + 12 = 0$

4. $x^2 - 5x - 24 = 0$

5. SKIP

6. SKIP

7. $x^2 + 8x = -7$

8. $x^2 - 5x = 13x - 81$

9. $3x^2 - 22x + 7 = 0$

10. SKIP

PROBLEM 2 - "More Practice" (Page 749)

Calculate the zeros of each quadratic function, or the roots of each quadratic equation, if possible.

- 1. SKIP
- 2. $f(x) = x^2 11x + 12$
- 3. SKIP
- 4. $2x^2 + 4x = 0$

5.
$$\frac{2}{3}x^2 - \frac{5}{6}x = 0$$