\qquad
\qquad

Learning Goals:

To find the solutions to quadratic equations using factoring.
To graph the solutions to a quadratic equation.

Notes

Zero Product Property states if the product of 2 or more factors $=0$, then at least 1 of the factors $=0$.

$$
\text { If } a b=0, \text { then } a=0 \text { or } b=0 .
$$

PROBLEM 1 - "Roots of Quadratic Equations" (Page 744)

1. Use the Zero Product Property to determine the solutions of the quadratic equation $x^{2}-4 x-5=0$. Then, check your solutions by substituting back into the original equation.
Factor the quadratic equation.
Set each binomial factor $=0$.
Solve for the variable (x).

$$
\begin{aligned}
& x^{2}-4 x-5=(x-5)(x+1)=0 \\
& \begin{array}{l}
x-5=0 \\
x=5 \\
5^{2}-4(5)-5=25-20-5=0 \\
(-1)^{2}-4(-1)-5=1+4-5=0
\end{array}
\end{aligned}
$$

Check:
2. Let's examine the quadratic equation $0=x^{2}-4 x-5$. (Page 745)
a. Graph both sides of the quadratic equation on the coordinate plane shown.
b. SKIP
c. Identify the vertex, x - and y-intercepts, and the axis of symmetry. y-intercept: $(0,-5)$
Let $x=0$ and solve for y.
x-intercept(s): $(-1,0)$ and $(5,0)$
The x-intercepts are the solutions to the quadratic equation.
axis of symmetry: $x=2$
$x=\frac{-1+5}{2}=\frac{4}{2}=2$
vertex: $(2,-9)$
Let $x=2$ and solve for y.

The $\underline{x \text {-intercepts }}$ are the solutions to the quadratic equation, a.k.a the zeros because you set the quadratic equation equal to zero and solve for x. The x-intercepts also indicate where the graph crosses the x-axis and are also referred to as the roots.

Determine the roots of each quadratic equation. (Page 746)
3. $x^{2}-8 x+12=0$

$$
\begin{aligned}
& x^{2}-8 x+12=0 \\
& (x-6)(x-2)=0 \\
& x-6=0 \text { or } x-2=0 \\
& x=6 \quad x=2
\end{aligned}
$$

Check: $(6)^{2}-8(6)+12=36-48+12=0$

$$
(2)^{2}-8(2)+12=4-16+12=0
$$

4. $x^{2}-5 x-24=0$

$$
\begin{array}{rlrlrl}
x^{2}-5 x-24 & =0 & & \\
(x-8)(x+3) & =0 & & \\
x-8 & =0 & \text { or } & x+3 & =0 \\
x & =8 & & x & =-3
\end{array}
$$

Check: $(8)^{2}-5(8)-24=64-40-24=0$

$$
(-3)^{2}-5(-3)-24=9+15-24=0
$$

5. SKIP
6. SKIP
7. $x^{2}+8 x=-7$

$$
\begin{aligned}
& x^{2}+8 x=-7 \\
& x^{2}+8 x+7=-7+7 \\
& x^{2}+8 x+7=0 \\
& (x+7)(x+1)=0 \\
& x+7=0 \text { or } x+1=0 \\
& x=-7 \text { or } x=-1
\end{aligned}
$$

Check: $x^{2}+8 x=(-7)^{2}+8(-7)=49-56=-7$

$$
x^{2}+8 x=(-1)^{2}+8(-1)=1-8=-7
$$

8. $x^{2}-5 x=13 x-81$

$$
\begin{aligned}
x^{2}-5 x & =13 x-81 \\
x^{2}-5 x-13 x+81 & =13 x-81-13 x+81 \\
x^{2}-18 x+81 & =0 \\
(x-9)(x-9) & =0 \\
x-9 & =0 \\
& \text { or } x-9 \\
x & =9
\end{aligned} \text { or } \quad x=9 \quad \$
$$

Check: $x^{2}-5 x=13 x-81$

$$
\begin{aligned}
(9)^{2}-5(9) & =13(9)-81 \\
81-45 & =117-81 \\
36 & =36
\end{aligned}
$$

9. $3 x^{2}-22 x+7=0$
$x^{2}-22 x+21=0$
$(x-21)(x-1)=0$
$\left(x-\frac{21}{3}\right)\left(x-\frac{1}{3}\right)$
$x-7=0 \quad$ or $\quad x-\frac{1}{3}=0$
$x=7 \quad$ or $\quad x=\frac{1}{3}$
10. SKIP

PROBLEM 2 - "More Practice" (Page 749)
Calculate the zeros of each quadratic function, or the roots of each quadratic equation, if possible.

1. SKIP
2. $f(x)=x^{2}-11 x+12$

No real zeros.
3. SKIP
4. $2 x^{2}+4 x=0$

$$
\begin{aligned}
& 2 x^{2}+4 x=0 \\
& 2 x(x+2)=0 \\
& 2 x=0 \text { or } x+2=0 \\
& x=0 \text { or } x=-2
\end{aligned}
$$

Check: $2(0)^{2}+4(0)=0$

$$
2(-2)^{2}+4(-2)=8-8=0
$$

5. $\frac{2}{3} x^{2}-\frac{5}{6} x=0$
$\frac{2}{3} x^{2}-\frac{5}{6} x=0$
$6\left(\frac{2}{3} x^{2}-\frac{5}{6} x=0\right)$
$4 x^{2}-5 x=0$
$x(4 x-5)=0$
$x=0$ or $4 x-5=0$
$x=0 \quad$ or $\quad \mathrm{x}=\frac{5}{4}$
