\qquad
\qquad Approximating and Rewriting Radicals

Learning Goals:

To determine the square root of perfect squares.
To rewrite radicals by extracting perfect squares.
To solve radical equations.

Vocabulary (Page 763)
The number a is a \qquad of b if $a^{2}=b$.

So, the square root of 9 is 3 and -3 because $3^{2}=9$ and $(-3)^{2}=9$.
The \qquad or \qquad square root is written as \qquad .

$$
\text { So, } \sqrt{16}=4
$$

The \qquad square root is written as \qquad .

So, $-\sqrt{25}=-5$
The expression under the radical sign is called the \qquad .
${ }_{\text {radical }}^{\sqrt{7}}{ }_{\text {râdicand }}$
You can use $\pm \sqrt{ }$ to indicate the \qquad and \qquad square roots.

So, $\pm \sqrt{36}= \pm 6$

Finding the Square Root of Perfect Squares

1. $\sqrt{49}=$ \qquad
2. $\pm \sqrt{36}=$ \qquad
3. $-\sqrt{121}=$ \qquad
4. $\sqrt{\frac{1}{25}=}$ \qquad

These are all \qquad -

Note, $\pm \sqrt{0}$ is always \qquad .

In Algebra 2, you will find out how to take the square root of a negative number!

Rewriting Radicals by Extracting Perfect Squares

Why would you want to simplify radicals? Isn't rounding your answer good enough?

When you simplify radicals, try to factor out the perfect squares...

$\sqrt{20}$			
$\sqrt{45} \cdot \sqrt{5}$	4 is a perfect square!	$\sqrt{9} \cdot \sqrt{5}$	9 is a perfect square!
$2 \sqrt{5}$		$3 \sqrt{5}$	

Practice

1. $\sqrt{50}$
2. $\sqrt{27}$
3. $\sqrt{48}$
4. $\sqrt{200}$

If you want an accurate answer, it's best to leave radicals in their exact form (with the root).
Sometimes, you can approximate using a calculator and rounding the answer. For example, $\sqrt{14} \approx 3.7$.

Solving Radical Equations

Solve each quadratic equation by taking the square root of each side. Round to the nearest tenth.

1. $x^{2}=40$
2. $x^{2}=75$
3. $x^{2}-4=23$

$$
\begin{aligned}
& \sqrt{x^{2}}= \pm \sqrt{40} \\
& x \approx \pm 6.3
\end{aligned}
$$

Math Challenge!

Solve each quadratic equation by taking the square root of each side. Round to the nearest tenth.

$$
\begin{aligned}
& (x-1)^{2}=17 \\
& \sqrt{(x-1)^{2}}= \pm \sqrt{17} \\
& x-1= \pm \sqrt{17} \\
& x=1 \pm \sqrt{17} \\
& x=1+\sqrt{17} \quad x=1-\sqrt{17} \\
& x \approx 5.1 \quad x \approx-3.1
\end{aligned}
$$

