SOLVING QUADRATIC EQUATIONS BY COMPLETING THE SQUARE

Section 12.7

PERFECT SQUARE TRINOMIALS

$$x^2+6x+9$$
 $x^2-10x+25$ $x^2+12x+36$

What's the relationship between the middle and last term????

Divide the middle term by 2. Then, square it. You get the last term!

CREATING A PERFECT SQUARE TRINOMIAL

- •How could you turn x^2+14x into a perfect square trinomial?
- •Divide the middle or linear term by 2. Then, square it to find the constant term.

$$\left(\frac{14}{2}\right)^2 = (7)^2 = 49$$

 $\frac{x^2+14x+49}{2}$ is a perfect square trinomial.

PERFECT SQUARE TRINOMIALS

Practice

$$\mathbf{x^2 + 20x + 100}$$
 $\left(\frac{20}{2}\right)^2 = (10)^2 = 100$

$$\left(\frac{20}{2}\right)^2 = \left(10\right)^2 = 100$$

$$-x^2-4x+4$$

$$\left(\frac{-4}{2}\right)^2 = \left(-2\right)^2 = 4$$

$$\begin{array}{c} 25 \\ \times^2 + 5x + \underline{4} \end{array}$$

$$\left(\frac{5}{2}\right)^2 = \frac{25}{4}$$

SOLVING QUADRATIC EQUATIONS BY CREATING A PERFECT SQUARE TRINOMIAL.

Step 1: Move the constant term to the right. Leave a space for the new constant term.

Step 2: Find the new constant term that completes the square on the left side of the equation. Add that term to both sides. Why BOTH sides?

Step 3: Factor the left side of the perfect square trinomial. Simplify the right side of the equation.

Step 4: Solve using square roots.

1)
$$x^2 + 8x - 20 = 0$$

 $+20 + 20$
 $x^2 + 8x = 20$

$$\left(\frac{8}{2}\right)^2 = \left(4\right)^2 = 16$$

$$x^2 + 8x + 16 = 20 + 16$$

$$(x+4)^2 = 36$$

$$x + 4 = \pm \sqrt{36}$$
$$x = -4 \pm 6$$

$$x = 2, x = -10$$

SOLVE BY

COMPLETING THE SQUARE

2)
$$x^{2} - 6x - 16 = 0$$

 $\pm 16 + 16$
 $x^{2} - 6x = 16$
 $\left(\frac{-6}{2}\right)^{2} = (-3)^{2} = 9$
 $x^{2} - 6x + 9 = 16 + 9$
 $(x - 3)^{2} = 25$
 $x - 3 = \pm \sqrt{25}$
 $x = 3 \pm 5$ $x = 8$
 $x = -2$

3)
$$x^{2}-2x-5=0$$

 $+5+5$
 $x^{2}-2x_{-}=5$
 $\left(\frac{-2}{2}\right)^{2}=(-1)^{2}=1$
 $x^{2}-2x+1=5+1$
 $(x-1)^{2}=6$
 $x-1=\pm\sqrt{6}$
 $x=1\pm\sqrt{6}$

SOLVE BY

COMPLETING THE SQUARE

4)
$$x^{2} + 8x + 11 = 0$$

 $-11 - 11$
 $x^{2} + 8x$ = -11
 $\left(\frac{8}{2}\right)^{2} = (4)^{2} = 16$
 $x^{2} + 8x + 16 = -11 + 16$
 $(x + 4)^{2} = 5$
 $x + 4 = \pm \sqrt{5}$
 $x = -4 \pm \sqrt{5}$
 $x \approx -1.8$
 $x \approx -6.2$

5)
$$x^{2} - 6x + 4 = 0$$

 $-4 - 4$
 $x^{2} - 6x = -4$
 $\left(\frac{-6}{2}\right)^{2} = (-3)^{2} = 9$
 $x^{2} - 6x + 9 = -4 + 9$
 $(x - 3)^{2} = 5$
 $x - 3 = \pm \sqrt{5}$
 $x = 3 \pm \sqrt{5}$
 $x \approx 5.2$
 $x \approx 0.8$