SOLVING QUADRATIC EQUATIONS BY

COMPLETING THE SQUARE

Section 12.7

PERFECT SQUARE TRINOMIALS

$$
x^{2}+6 x+9 \quad x^{2}-10 x+25 \quad x^{2}+12 x+36
$$

What's the relationship between the middle and last term????

Divide the middle term by 2. Then, square it. You get the last term!

CREATING A PERFECT SQUARE TRINOMIAL

How could you turn $\mathbf{x}^{2} \mathbf{+ 1 4} \mathbf{x}$ into a perfect square trinomial?

Divide the middle or linear term by 2 . Then, square it to find the constant term.

$$
\left(\frac{14}{2}\right)^{2}=(7)^{2}=49
$$

$\underline{x^{2}+14 x+49}$ is a perfect square trinomial.

PERFECT SQUARE TRINOMIALS

Practice

$$
\begin{array}{ll}
\mathbf{x}^{2}+20 \mathbf{x}+\ldots 100 & \left(\frac{20}{2}\right)^{2}=(10)^{2}=100 \\
\mathbf{x}^{2}-4 \mathbf{x}+\ldots 4 & \left(\frac{-4}{2}\right)^{2}=(-2)^{2}=4 \\
\mathbf{x}^{2}+5 \mathbf{x}+\ldots \frac{25}{4} & \left(\frac{5}{2}\right)^{2}=\frac{25}{4}
\end{array}
$$

SOLVING QUADRATIC EQUATIONS BY CREATING A PERFECT SQUARE TRINOMIAL.

Step 1: Move the constant term to the right. Leave a space for the new constant term.

$$
\text { 1) } \begin{aligned}
x^{2}+8 x-20 & =0 \\
& \begin{array}{l}
+20 \\
x^{2}+8 x
\end{array}=20
\end{aligned}
$$

Step 2: Find the new constant term that completes the square on the left side of the equation. Add that term to both sides. Why BOTH sides?

$$
\begin{aligned}
\left(\frac{8}{2}\right)^{2}=(4)^{2} & =16 \\
& x^{2}+8 x+16=20+16
\end{aligned}
$$

$$
(x+4)^{2}=36
$$ square trinomial. Simplify the right side of the equation.

$$
\begin{array}{r}
x+4= \pm \sqrt{36} \\
x=-4 \pm 6 \\
x=2, x=-10
\end{array}
$$

SOLVE BY

COMPLETING THE SOUARE

$$
\begin{aligned}
& \text { 2) } x^{2}-6 x-16=0 \\
& x^{2}-6 x-\frac{+16+16}{=16} \\
& \left(\frac{-6}{2}\right)^{2}=(-3)^{2}=9 \\
& x^{2}-6 x+9=16+9 \\
& (x-3)^{2}=25 \\
& x-3= \pm \sqrt{25} \\
& x=3 \pm 5 \\
& \begin{array}{l}
x=8 \\
x=-2
\end{array} \\
& \text { 3) } x^{2}-2 x-5=0 \\
& x^{2}-2 x \underline{\frac{+5+5}{=}} \\
& \left(\frac{-2}{2}\right)^{2}=(-1)^{2}=1 \\
& x^{2}-2 x+1=5+1 \\
& (x-1)^{2}=6 \\
& x-1= \pm \sqrt{6} \\
& \begin{array}{ll}
x=1 \pm \sqrt{6} \quad \begin{array}{l}
x \approx 3.4 \\
x \approx-1.4
\end{array} ~
\end{array}
\end{aligned}
$$

SOLVE BY

COMPLETING THE SQUARE

4) $x^{2}+8 x+11=0$

$$
x^{2}+8 x \quad=-11
$$

$$
\begin{gathered}
\left(\frac{8}{2}\right)^{2}=(4)^{2}=16 \\
x^{2}+8 x+16=-11+16
\end{gathered}
$$

$$
(x+4)^{2}=5
$$

$$
x+4= \pm \sqrt{5}
$$

$$
x=-4 \pm \sqrt{5}
$$

5) $x^{2}-6 x+4=0$

$$
x^{2}-6 x
$$

$$
\begin{aligned}
& \left(\frac{-6}{2}\right)^{2}=(-3)^{2}=9 \\
& x^{2}-6 x+9=-4+9
\end{aligned}
$$

$$
(x-3)^{2}=5
$$

$$
x-3= \pm \sqrt{5}
$$

$$
\begin{aligned}
& x \approx-1.8 \\
& x \approx-6.2
\end{aligned}
$$

$$
\begin{array}{ll}
x=3 \pm \sqrt{5} & x \approx 5.2 \\
x \approx 0.8
\end{array}
$$

