\qquad
\qquad

Completing the Square Warm Up

Solve each quadratic equation by completing the square. Round to the nearest $\mathbf{1 0 0}^{\text {th }} \boldsymbol{1}$

1. $x^{2}+8 x+1=0$

$$
-1 \quad-1
$$

$$
x^{2}+8 x+\ldots=-1+
$$

\qquad
$(x \quad)^{2}=$ \qquad

$$
\sqrt{(x \quad)^{2}}= \pm \sqrt{ }
$$

$$
= \pm \sqrt{ }
$$

$$
x \approx
$$

\qquad , $x \approx$ \qquad
2. $x^{2}-12 x-28=0$ $+28+28$
$x^{2}-12 x+$ \qquad $=28+$ \qquad

$$
\begin{aligned}
(x \quad)^{2} & = \\
\sqrt{(x \quad)^{2}} & = \pm \sqrt{\square} \\
& = \pm \sqrt{ }
\end{aligned}
$$

$x=$ \qquad
$x=$ \qquad
\qquad

$$
x= \pm \sqrt{ }
$$

Algebra 1: 12.7

Name \qquad Period \qquad

Completing the Square Warm Up

Solve each quadratic equation by completing the square. Round to the nearest $\mathbf{1 0 0}^{\text {th }} \boldsymbol{1}$

1. $x^{2}+8 x+1=0$

$$
-1 \quad-1
$$

$$
x^{2}+8 x+\ldots=-1+
$$

$$
(x \quad)^{2}=
$$

\qquad

$$
\sqrt{(x \quad)^{2}}= \pm \sqrt{ }
$$

$$
= \pm \sqrt{ }
$$

$$
x= \pm \sqrt{ }
$$

$$
x \approx
$$

\qquad ,$x \approx$ \qquad
2. $x^{2}-12 x-28=0$

$$
+28+28
$$

$$
x^{2}-12 x+\ldots=28+
$$

\qquad

$$
\begin{aligned}
(x \quad)^{2} & = \\
\sqrt{(x \quad)^{2}} & = \pm \sqrt{\square} \\
& = \pm \sqrt{ }
\end{aligned}
$$

$$
x= \pm \sqrt{ }
$$

$$
x=
$$

\qquad , $x=$ \qquad

