\qquad
\qquad The Quadratic Formula

Learning Goals:

To find solutions (roots or zeros) using the quadratic formula.
To determine the number of solutions for a quadratic equation using the discriminant.

The Quadratic Formula

Use the Quadratic Formula to find solutions when the quadratic equation is difficult to factor.

- If $a x^{2}+b x+c=0$ and $a \neq 0$, then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.

Solve Using the Quadratic Formula

Steps: \quad What are the solutions for $x^{2}-8=2 x$? Use the quadratic formula to solve.

- Write the quadratic equation in standard form.
- Substitute numeric values for a, b, and c.
- Use the quadratic formula to solve for the roots or zeros.
- Simplify.

The Discriminant

- Quadratic equations can have \qquad , \qquad or \qquad solutions. You can determine the number of solutions a quadratic equation has using the \qquad .
- The discriminant is the expression under the radical sign in the quadratic formula: \qquad .
- The discriminant can be \qquad
\qquad
\qquad .

Discriminant	$b^{2}-4 a c>0$	$b^{2}-4 a c=0$	$b^{2}-4 a c<0$
Example	$x^{2}-6 x+7=0$ The discriminant is $(-6)^{2}-4(1)(7)=8$, which is positive.	$x^{2}-6 x+9=0$ The discriminant is $(-6)^{2}-4(1)(9)=0$.	$x^{2}-6 x+11=0$ The discriminant is $(-6)^{2}-4(1)(11)=-8$ which is negative.
Number of Solutions	There are two realnumber solutions.	There is one realnumber solution.	There are no realnumber solutions.

Using the Discriminant

Steps:

- Write the quadratic equation in standard form.
- Substitute numeric values for a, b, and c.
- Simplify.
- Determine the number of solutions.
- $b^{2}-4 a c$:
$>0 \rightarrow 2$ solutions
$=0 \rightarrow 1$ solution
$<0 \rightarrow$ no solution

