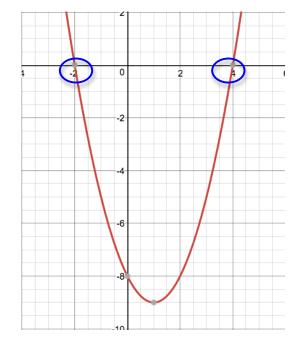


Learning Goals:

To find solutions (roots or zeros) using the quadratic formula. To determine the number of solutions for a quadratic equation using the discriminant.

The Quadratic Formula


Use the Quadratic Formula to find solutions when the quadratic equation is difficult to factor.

• If $ax^2 + bx + c = 0$ and $a \neq 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Solve Using the Quadratic Formula

Steps:	What are the solutions for $x^2 - 8 = 2x$? Use the quadratic formula to solve.
 Write the quadratic equation in standard form. 	$x^{2} - 2x - 8 = 0$ a = 1, b = -2, c = -8
 Substitute numeric values for a, b, and c. 	$x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(-8)}}{2(1)}$
 Use the quadratic formula to solve for the roots or zeros. 	$x = \frac{2 \pm \sqrt{4 + 32}}{2}$ $x = \frac{2 \pm \sqrt{36}}{2}$
 Simplify. 	$x = \frac{2 \pm 6}{2}$ $x = \frac{2 + 6}{2} = \frac{8}{2} = 4 \text{ or } x = \frac{2 - 6}{2} = \frac{-4}{2} = -2$

The graph of $y = x^2 - 2x - 8$. The solutions x = 4 and x = -2 are the *x*-intercepts.

The Discriminant

- Quadratic equations can have <u>two</u>, <u>one</u>, or <u>no</u> solutions. You can determine the number of solutions a quadratic equation has using the <u>discriminant</u>.
- The discriminant is the expression under the radical sign in the quadratic formula: $\frac{b^2 4ac}{ac}$.
- The discriminant can be **<u>positive</u>**, **<u>negative</u>**, or <u>zero</u>.

Discriminant	$b^2 - 4ac > 0$	$b^2 - 4ac = 0$	$b^2 - 4ac < 0$
Example	$x^{2} - 6x + 7 = 0$ The discriminant is $(-6)^{2} - 4(1)(7) = 8,$ which is positive.	$x^{2} - 6x + 9 = 0$ The discriminant is $(-6)^{2} - 4(1)(9) = 0.$	$x^2 - 6x + 11 = 0$ The discriminant is $(-6)^2 - 4(1)(11) = -8$, which is negative.
		$\begin{array}{c} 4 \\ 2 \\ \hline \\ 0 \\ \end{array}$	$\begin{array}{c} 4 \\ 2 \\ 0 \\ 0 \\ 2 \\ 4 \\ 2 \\ 2 \\ 4 \\ 2 \\ 4 \\ 4 \\ 2 \\ 4 \\ 2 \\ 4 \\ 2 \\ 4 \\ 2 \\ 4 \\ 2 \\ 4 \\ 2 \\ 4 \\ 2 \\ 4 \\ 2 \\ 4 \\ 2 \\ 4 \\ 2 \\ 4 \\ 2 \\ 2$
Number of Solutions	There are two real- number solutions.	There is one real- number solution.	There are no real- number solutions.

Using the Discriminant

Steps:	
	How many real number solutions does $2x^2 - 3x = -5$ have?
 Write the quadratic 	
equation in standard	$2x^2 - 3x + 5 = 0$
form.	a = 2, b = -3, c = 5
	$b^2 - 4ac = (-3)^2 - 4(2)(5) = 9 - 40 = -31$
 Substitute numeric 	
values for a, b, and c.	The discriminant is negative so there are no solutions for the quadratic
 Simplify. 	equation.
 Determine the number 	
of solutions.	
• $b^2 - 4ac$:	
$> 0 \rightarrow 2$ solutions	
$= 0 \rightarrow 1$ solution	
$< 0 \rightarrow$ no solution	