- 1. Write the equation of each function after the translation described.
 - a. f(x) = 2x after a translation 6 units to the right
 - b. $f(x) = -4^x$ after a translation 3 units up
 - c. $f(x) = 2x^2$ after a translation 5 units left
 - d. f(x) = 3x after a translation 2 units down
 - e. $f(x) = -6x^2$ after a reflection over the x-axis
 - f. $f(x) = 5^x$ after a reflection over the y-axis
 - g. f(x) = -4x after a translation 6 units left
- 2. Describe each graph in relation to its basic function.
 - a. Compare $g(x) = b^x 8$ to the basic function $f(x) = b^x$
 - b. Compare $g(x) = b^{-x}$ to the basic function $f(x) = b^{x}$
 - c. Compare g(x) = (x+1) to the basic function f(x) = x
 - d. Compare $g(x) = -6x^2$ to the basic function $f(x) = 6x^2$
 - e. Compare $g(x) = (x-1)^2$ to the basic function $f(x) = x^2$
 - f. Compare $g(x) = b^{(x+8)}$ to the basic function $f(x) = b^x$

- 3. Graph each function. Then graph the transformation.
 - a. $f(x) = \frac{1}{2}x$; $g(x) = \frac{1}{2}x + 3$

x	y	
-2		
-1		
0		
1		
2		

b. $f(x) = 2^x$; $g(x) = 2^{(x-3)}$

x	y											
-1												
0												
1												
2												
asym												

c. f(x) = 2x; g(x) = -2x

		,					_1	_					
x	у			Ė			_						
-2			#	Ė			_						
-1		_											
0													
1				Ė									
2			#	Ė			_						

y d. $f(x) = \left(\frac{1}{2}\right)^x$; $g(x) = \left(\frac{1}{2}\right)^x - 3$ x

e. $f(x) = 3^x$; $g(x) = 3^{-x}$

asym f. Bonus $\odot f(x) = x^2$; $g(x) = \left(x+1\right)^2 + 3$

y -2

