Chapter 2 Introduction

Practice with Evaluating and Solving Equations/Functions

A New Way to Write Something Familiar

Functions can be represented in a number of ways. An equation representing a function can be written using function notation. Function notation is a way of representing functions algebraically. This form allows you to more efficiently identify the independent and dependent quantities. The function f(x) is read as "f of x" and indicates that x is the independent variable.

Let's look at the relationship between an equation and function notation.

Remember, you can only write functions in function notation. So sorry, non-functions! You'll still need to be written as equations.

Consider orders for a custom T-shirt shop. U.S. Shirts charges \$8 per shirt plus a one-time charge of \$15 to set a T-shirt design. The equation y = 8x + 15 can be written to model this situation. The independent variable x represents the number of shirts ordered, and the dependent variable y represents the total cost of the order, in dollars.

You know this is a function because for each number of shirts ordered (independent value) there is exactly one total cost (dependent value) associated with it.

Because this situation is a function, you can write y = 8x + 15 in function notation.

$$f(x) = 8x + 15$$

The cost, defined by f, is a function of x, the number of shirts ordered.

A common way to name a function is f(x). However, you can choose any variable to name a function. You could write the T-shirt cost function as C(s) = 8s + 15, where the cost, defined as C, is a function of s, the number of shirts ordered.

You can use any two letters to write or name a function!!!!!

Problem Set

Rewrite each function using function notation.

1. Rewrite the function y = 3x - 8 using function notation so that the dependent quantity, defined as f, is a function of the independent quantity x.

$$f(x) = 3x - 8$$

2. Rewrite the function $y = 3x^2 + 6x - 1$ using function notation so that the dependent quantity, defined as C, is a function of the independent quantity x.

$$C(x) = 3x^2 + 6x - 1$$

Rewrite the function y = 3^x + 8 using function notation so that the dependent quantity, defined as P, is a function of the independent quantity x.

$$P(x) = 3^x + 8$$

4. Rewrite the function I = |n - 2| using function notation so that the dependent quantity, defined as L, is a function of the independent quantity n.

$$L(n) = |n-2|$$

5. Rewrite the function $d = -\frac{1}{2}m + 5$ using function notation so that the dependent quantity, defined as A, is a function of the independent quantity m. $A(m) = -\frac{1}{2}m + 5$

Evaluate each of the following.

1.
$$2a + 4$$
 when $a = 5$

2.
$$3w - 2$$
 when $w = -8$

3.
$$f(x) = 4x + 9$$
 when $x = 2$

3.
$$f(x) = 4x + 9$$
 when $x = 2$ 4. $f(x) = 2x - 4$ when $x = -1$

17

Solve each equation.

1.
$$x-4=-9$$

2.
$$\frac{n}{6} = 5$$

3.
$$5c = -15$$

X = 30

4.
$$6a + 2 = -4$$

$$5. \ \frac{r}{4} + 3 = 9$$

6.
$$3(k+8) = 21$$

X = -1

Substitute and solve for x in each of the following.

1.
$$f(x) = x - 4$$
 when $f(x) = 10$

2.
$$f(x) = 2x + 28$$
 when $f(x) = 328$

3.
$$f(x) = 4x - 10$$
 when $f(x) = 86$ 4. $f(x) = x + 4$ when $f(x) = 2x - 8$