Chapter 2 Introduction

Practice with Evaluating and Solving Equations/Functions

Problem 1 A New Way to Write Something Familiar

0
Functions can be represented in a number of ways. An equation representing a function can be written using function notation. Function notation is a way of representing functions algebraically. This form allows you to more efficiently identify the independent and dependent quantities. The function $f(x)$ is read as " f of x " and indicates that x is the independent variable.

Let's look at the relationship between an equation and function notation.

Consider orders for a custom T-shirt shop. U.S. Shirts charges

 $\$ 8$ per shirt plus a one-time charge of $\$ 15$ to set a T-shirt design. The equation $y=8 x+15$ can be written to model this situation. The independent variable x represents the number of shirts ordered, and the dependent variable y represents the total cost of the order, in dollars.You know this is a function because for each number of shirts ordered (independent value) there is exactly one total cost (dependent value) associated with it.

Because this situation is a function, you can write $y=8 x+15$ in function notation.

$$
f(x)=8 x+15
$$

The cost, defined by f, is a function of x, the number of shirts ordered.

A common way to name a function is $f(x)$. However, you can choose any variable to name a function. You could write the T-shirt cost function as $C(s)=8 \mathrm{~s}+15$, where the cost, defined as C, is a function of s, the number of shirts ordered.

You can use any two letters to write or name a function!!!!!

Problem Set

Rewrite each function using function notation.

1. Rewrite the function $y=3 x-8$ using function notation so that the dependent quantity, defined as f, is a function of the independent quantity x.
$f(x)=3 x-8$
2. Rewrite the function $y=3 x^{2}+6 x-1$ using function notation so that the dependent quantity, defined as C, is a function of the independent quantity x.

$$
C(x)=3 x^{2}+6 x-1
$$

3. Rewrite the function $y=3^{x}+8$ using function notation so that the dependent quantity, defined as P, is a function of the independent quantity x.

$$
P(x)=3^{x}+8
$$

4. Rewrite the function $I=|n-2|$ using function notation so that the dependent quantity, defined as L, is a function of the independent quantity n.

$$
L(n)=|n-2|
$$

5. Rewrite the function $d=-\frac{1}{2} m+5$ using function notation so that the dependent quantity, defined as A, is a function of the independent quantity m.

$$
A(m)=-\frac{1}{2} m+5
$$

Evaluate each of the following.

1. $2 \mathrm{a}+4$ when $\mathrm{a}=5$

14
3. $f(\mathrm{x})=4 \mathrm{x}+9$ when $\mathrm{x}=2 \quad$ 4. $f(\mathrm{x})=2 \mathrm{x}-4$ when $\mathrm{x}=-1$
2. $3 \mathrm{w}-2$ when $\mathrm{w}=-8$
-26

Solve each equation.

$$
\begin{array}{ccc}
\text { 1. } x-4=-9 & \text { 2. } \frac{n}{6}=5 & \text { 3. } 5 c=-15 \\
x=-5 & x=30 & x=-3 \\
\text { 4. } 6 a+2=-4 & \text { 5. } \frac{r}{4}+3=9 & \text { 6. } 3(k+8)=21 \\
x=-1 & x=24 & x=-1
\end{array}
$$

Substitute and solve for x in each of the following.

1. $f(x)=x-4$ when $f(x)=10$

$$
X=14
$$

3. $f(x)=4 x-10$ when $f(x)=86 \quad$ 4. $f(x)=x+4$ when $f(x)=2 x-8$

$$
X=24
$$

2. $f(x)=2 x+28$ when $f(x)=328$

$$
X=150
$$

$$
X=12
$$

