

Chapter 4 Introduction

Slope and Graphing Review

I. Find the Slope Using the Points on a Graph

- Start with the point on the far left.
- Go up 4 units (+).
- Go right 3 units (+).
- What happens if you start with the point on the far right?
II. Find the Slope Using Two Points

$$
\begin{aligned}
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& a \cdot(2,3),(4,-6) b \cdot(-2,-3),(-4,-6) \\
& \frac{-6-3}{4-2}=\frac{-9}{2} \frac{-6-(-3)}{-4-(-2)}=\frac{-3}{-2} \\
& m=-\frac{9}{2} m=\frac{3}{2}
\end{aligned}
$$

III. Find the Rate of Change From the Data Table

\# of Days x	Charge y
1	$\$ 10.00$
2	$\$ 20.00$
5	$\$ 50.00$

- Pick any 2 days and their corresponding charges.

$$
\begin{aligned}
& (1,10) \&(5,50) \\
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& \frac{50-10}{5-1}=10
\end{aligned}
$$

- Write them as coordinates.

\$10/day is your rate

- Use the slope formula to find the rate of change.
IV. Write an Equation in Slope-Intercept Form. Then Graph It.

$$
\text { 1. } \begin{aligned}
& 1 / 2 x+y=2 \\
& y=-\frac{1}{2} x+2 \\
& m=-\frac{1}{2} \quad b=2
\end{aligned}
$$

2. $-2 y=2(4-3 x)$

$$
-2 y=8-6 x
$$

$$
y=-4+3 x \text { or } y=3 x-4
$$

$$
m=3
$$

$$
b=-4
$$

3. $2 y-6=3 x$

$$
2 y=3 x+6
$$

$$
y=\frac{3}{2} x+3
$$

$$
m=\underline{\frac{3}{2}} \quad b=3
$$

4. $4 x+3 y=2 x-1$
$3 y=-2 x-1$
$y=-\frac{2}{3} x-\frac{1}{3}$
$m=\underline{-\frac{2}{3}} \quad b=\underline{-\frac{1}{3}}$

V. Write an Equation in Slope-Intercept Form Using the Graph
a.

- Find the y-intercept.
- Calculate the slope. $\frac{\text { rise }}{\text { run }}$
- Use the slope-intercept form to write the equation:

$$
y=m x+b .
$$

y-intercept $(b)=\underline{4}$
slope $(\mathrm{m})=\frac{\text { rise }}{\text { run }}=\underline{\frac{-4}{4}=-1}$
Equation: $y=-x+4$

If there are no points on the line:

- Find out where the line crosses the y-axis. This is the y-intercept.
- Find another point on the line where it intersects the corner of a square.
- Use rise/run to calculate the slope.

$$
y \text {-intercept }(b)=
$$

$$
\text { slope }(m)=\overline{4}
$$

Equation: $y=\frac{3}{4} x-3$
VI. Equations of Horizontal and Vertical Lines

HOY

Horizontal
0 Slope
$Y=a \#$
\qquad
VII. Graph the Lines

$$
\begin{array}{cc}
y=-4 & \text { and } \\
\text { HOY } & =2 \\
\text { HUX }
\end{array}
$$

VUX
Vertical
Undefined Slope
X $=\mathrm{a}$ \#

VIII. Point-Slope Form

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

a. Write an equation in slope-intercept form for the line that contains the point $(5,4)$ and has a slope of 2 .

$$
\begin{aligned}
y-4 & =2(x-5) \\
y-4 & =2 x-10 \\
+4 & +4
\end{aligned} \quad y=2 x-6
$$

b. Write an equation in slope-intercept form for the line that contains the point $(1,-6)$ and has a slope of -3 .

$$
\begin{aligned}
y-(-6) & =-3(x-1) \\
y+6 & =-3 x+3 \quad y=-3 x-3
\end{aligned}
$$

c. Write an equation in slope-intercept form for the line that contains the point $(-4,4)$ and has a slope of $1 / 2$.

$$
\begin{array}{rlrl}
y-(4) & =\frac{1}{2}(x-(-4)) & y-4 & =\frac{1}{2} x+2 \\
+4 & +4 \\
y-4 & =\frac{1}{2}(x+4) & y & =\frac{1}{2} x+6
\end{array}
$$

d. Write an equation in slope-intercept form for the line that contains the points $(2,4)$ and $(-2,6)$.

$$
m=\frac{6-4}{-2-2}=\frac{2}{-4}=-\frac{1}{2} \quad \begin{aligned}
y-4 & =-\frac{1}{2}(x-2) \\
y-4 & =-\frac{1}{2} x+1 \\
+4 & +4
\end{aligned} \quad y=-\frac{1}{2} x+5
$$

e. Write an equation in slope-intercept form for the line that contains the points $(-3,-2)$ and $(-4,1)$.

$$
m=\frac{1-(-2)}{-4-(-3)}=\frac{3}{-1}=-3 \quad \begin{aligned}
y-(-2) & =-3(x-(-3)) \\
y+2 & =-3(x+3) \\
y+2 & =-3 x-9 \\
-2 & -2
\end{aligned} \quad y=-3 x-11
$$

f. Write an equation in slope-intercept form for the line that contains the points $(2,-4)$ and $(0,6)$.

$$
m=\frac{6-(-4)}{0-2}=\frac{10}{-2}=-5 \quad \begin{array}{ll}
y-6=-5(x-0) \\
y-6=-5 x \\
+6 & +6
\end{array} \quad y=-5 x+6
$$

