\qquad
\qquad
Simple: $A=P+(P r) t$
Compound: $A=P(1+r)^{t}$

1. Cole deposited $\$ 1200$ into an account. The interest rate is 5%. Use the simple and compound interest formulas to complete the table. Round to the nearest CENT.
a. If it costs $\$ 300.00$ to keep your savings in a compound interest account, should you use that account if you save your money for only 10 years?
b. For 20 years?

Quantity	Time	Simple Interest Balance	Compound Interest Balance
Units			
	0		
3			
10			
20			

2. Dab City has a population of 26,000 . Its population is increasing at a rate of 3.5%.

- Write a function to represent the population as a function of time.
- Determine the population after each given number of years. Round your answer to the nearest WHOLE NUMBER.

Function: $\quad P(t)=P(1+r)^{t}$
a. 2 years
b. 10 years
c. 20 years
3. Whoville has a population of 85,000 . Its population is decreasing at a rate of 2.5%.

- Write a function to represent the population as a function of time.
- Determine the population after each given number of years. Round your answer to the nearest WHOLE NUMBER.

Function: $P(t)=P(1-r)^{t}$
a. 5 years
b. 8 years
c. 16 years

Complete the table and graph each function. List the y-intercept, asymptote, domain, and range.
4. $y=2^{x}$

asymptote:
range:
domain:
5. $y=\left(\frac{1}{4}\right)^{x}$

\mathbf{x}	\mathbf{y}
-2	
-1	
0	
1	
2	

y-intercept:
domain: range:
7. $y=-3 \cdot\left(\frac{1}{2}\right)^{x}$

\mathbf{x}	\mathbf{y}
-2	
-1	
0	
1	
2	

y-intercept:
domain:
asymptote:
range:
8. Write the equation of each function $\mathbf{g}(\mathbf{x})$ after the translation.
a. $f(x)=-8 x$ after a translation 6 units to the right
b. $f(x)=4^{x}$ after a translation 3 units up
c. $f(x)=2 x^{2}$ after a translation 2 units left
d. $f(x)=4 x$ after a translation 7 units down
e. $f(x)=5 x^{2}$ after a reflection over the x-axis
f. $\quad f(x)=2^{x}$ after a reflection over the y-axis
g. $f(x)=\left(\frac{1}{2}\right)^{x}$ after a translation 4 units to the right
h. $f(x)=x^{2}$ after a translation 4 units down

9. Describe each graph in relation to its basic function.

a. Compare $g(x)=(x+2)^{2}$ to the basic function $f(x)=x^{2}$
b. Compare $g(x)=b^{x}+1$ to the basic function $f(x)=b^{x}$
c. Compare $g(x)=b^{-x}$ to the basic function $f(x)=b^{x}$
d. Compare $g(x)=2^{(x-7)}$ to the basic function $f(x)=2^{x}$
e. Compare $g(x)=-4 x^{2}$ to the basic function $f(x)=4 x^{2}$
f. Compare $g(x)=b^{(x-2)}$ to the basic function $f(x)=b^{x}$
g. Compare $g(x)=-2^{x}$ to the basic function $f(x)=2^{x}$
h. Compare $g(x)=\left(\frac{1}{2}\right)^{(x+4)}$ to the basic function $f(x)=\left(\frac{1}{2}\right)^{x}$
10. Each coordinate plane shows the graph of the basic function. Sketch the graph of $g(x)$.
a. $g(x)=b^{(x-6)}$

c. $g(x)=f(x)+2$

e. $g(x)=b^{-x}$

b. $g(x)=f(x+5)$

d. $g(x)=b^{x}-4$

f. $g(x)=-b^{x}$

g. $g(x)=f(x)-4$

i. $g(x)=f(x)+5$

k. $g(x)=-f(x)$

h. $g(x)=f(x-3)$

j. $g(x)=f(x+5)$

1. $g(x)=f(-x)$

