Algebra 1: Chapter 5 Test Review

_____ Period ____

Simple: A = P + (Pr)t

Compound: $A = P(1+r)^t$

1. Cole deposited \$1200 into an account. The interest rate is 5%. Use the simple and compound interest formulas to complete the table. **Round to the nearest CENT**.

		Quantity	Time	Simple Interest Balance	Compound Interest Balance
a.	If it costs \$300.00 to keep your savings in a compound interest	Units			
b.	account, should you use that account if you save your money for only 10 years? For 20 years?	Expression			
			0		
			3		
			10		
			20		

- 2. Dab City has a population of 26,000. Its population is *increasing* at a rate of 3.5%.
 - Write a function to represent the population as a function of time.
 - Determine the population after each given number of years. **Round your answer to the nearest WHOLE NUMBER.**

Function: $P(t) = P(1+r)^t$

a. 2 years

b. 10 years

c. 20 years

- 3. Whoville has a population of 85,000. Its population is *decreasing* at a rate of 2.5%.
 - Write a function to represent the population as a function of time.
 - Determine the population after each given number of years. Round your answer to the nearest WHOLE NUMBER.

Function: $P(t) = P(1-r)^t$

a. 5	5 years	b.	8 years	c.	16 years
------	---------	----	---------	----	----------

Complete the table and graph each function. List the y-intercept, asymptote, domain, and range.

8. Write the equation of each function g(x) after the translation.

- a. f(x) = -8x after a translation 6 units to the right
- b. $f(x) = 4^x$ after a translation 3 units up
- c. $f(x) = 2x^2$ after a translation 2 units left
- d. f(x) = 4x after a translation 7 units down
- e. $f(x) = 5x^2$ after a reflection over the x-axis
- f. $f(x) = 2^x$ after a reflection over the y-axis
- g. $f(x) = \left(\frac{1}{2}\right)^{x}$ after a translation 4 units to the right
- h. $f(x) = x^2$ after a translation 4 units down

9. Describe each graph in relation to its basic function.

- a. Compare $g(x) = (x+2)^2$ to the basic function $f(x) = x^2$
- b. Compare $g(x) = b^x + 1$ to the basic function $f(x) = b^x$
- c. Compare $g(x) = b^{-x}$ to the basic function $f(x) = b^{x}$
- d. Compare $g(x) = 2^{(x-7)}$ to the basic function $f(x) = 2^x$
- e. Compare $g(x) = -4x^2$ to the basic function $f(x) = 4x^2$
- f. Compare $g(x) = b^{(x-2)}$ to the basic function $f(x) = b^x$
- g. Compare $g(x) = -2^x$ to the basic function $f(x) = 2^x$

h. Compare
$$g(x) = \left(\frac{1}{2}\right)^{(x+4)}$$
 to the basic function $f(x) = \left(\frac{1}{2}\right)^x$

10. Each coordinate plane shows the graph of the basic function. Sketch the graph of g(x).

b.
$$g(x) = f(x+5)$$

d. $g(x) = b^x - 4$

