\qquad
\qquad Systems of Equations

Define each of the following terms. If you need help, see pages $368,370,381$, and 388 .

1. Break-Even Point -
2. System of Linear Equations -
3. Consistent System -
4. Inconsistent System -
5. Substitution Method -
6. Linear Combinations (Elimination) Method -
7. Sketch each system of linear equations. How many points of intersection does each system have? How do the slopes and y-intercepts compare for each system of linear equations?
a) One Solution:
b) Infinite Solutions:
c) No Solution:

Clear the fractions. Then, solve each system of linear equations by any method.
8. $\begin{array}{r}\frac{3}{4} x+\frac{1}{2} y=\frac{1}{4} \\ \frac{2}{3} x+\frac{1}{6} y=\frac{1}{2}\end{array}$

$$
\text { 9. } \begin{aligned}
3 y-x & =-2 \\
y-\frac{1}{3} x & =2
\end{aligned}
$$

10. Write a system of linear equations to represent the problem situation. Then, graph the system of linear equations and estimate the break-even point. Explain what the break-even point represents with respect to the given problem situation.

Claire sells jewelry at a local market. Each piece of jewelry costs her $\$ 5.00$ to make and she has to pay $\$ 50$ for a booth at the market. She sells each piece of jewelry for $\$ 20$.

11. A sports ticketing company offers two ticket plans. One plan costs $\$ 120$ plus $\$ 25$ per ticket. The other plan costs $\$ 40$ per ticket. How many tickets must Gloria buy in order for the first plan to be the same price as the second plan? Write a system of equations and use any method to solve.
12. Mikayla and Jeppa are making chicken noodle soup. Nancy opens 4 large cans and 6 small cans of soup and pours them into her soup pot. Her pot contains 114 ounces of soup. Warren opens 3 large cans and 5 small cans of soup. His pot contains 91 ounces of soup. How many ounces of soup does each large can and each small can contain? Write a system of equations and use any method to solve.

