Algebra 1: Exponent Rules Guided Notes & Practice

Any quantity raised to the "zero" power is _____!!!

Use the Zero Exponent Rule to simplify:

a.
$$7^0 =$$

b.
$$\pi^0$$
 =

c.
$$(-5)^0 =$$

d.
$$-5^0 =$$

Properties of Exponents

The Product Rule: $x^a \cdot x^b = x^{a+b}$

Examples:

The Quotient Rule: $\frac{x^a}{x^b} = x^{a-b}$

Examples:

The Power Rule: $(x^a)^b = x^{ab}$

Examples:

Combining more than one rule....

Product to a Power:

$$(2a^2b^2\cdot a^5)^4 =$$

Quotient to a Power:

$$\left(\frac{-2a^2b^2}{3a^7h}\right)^2 =$$

Practice with Exponents

1.
$$(5a^2b^3c^4)(6a^3b^4c^2)$$

2.
$$8a^0$$

3.
$$(2b^2)^3$$

4.
$$(-2x^4)^3$$

5.
$$\left(-4a^2b^5c\right)^2$$

6.
$$\frac{x^6 y^4 z}{x^2 y^9 z^7}$$

$$7. \quad \left(\frac{2a^3b^5}{3}\right)^2$$

$$8. \quad \left(\frac{x^5 y^2}{x^3 y^7}\right)^3$$

The Negative Exponent Rule

If *x* is any real number other than 0 and *a* is a natural number,

$$x^{-a} =$$

Negative exponents are "unhappy." So move them up or down and they become happy ("positive"). ©

$$\frac{1}{x^{-a}} =$$

Using the Negative Exponent Rule

1.
$$8^{-2}$$

2.
$$4x^{-3}$$

3.
$$\frac{2x^4}{5x^{-3}y}$$

$$4. \quad \frac{2x^{-2}}{4y^{-3}}$$

5.
$$\left(\frac{x^2y^{-4}}{x^3y}\right)^{-2}$$

6.
$$(ab^{-2}c^4)^{-3}$$