Turn to Page 35

There Are Many Ways to Represent Functions

Recognizing Algebraic and Graphical Representations of Functions

LEARNING GOALS

In this lesson, you will:

- Write equations using function notation.
- Recognize multiple representations of functions.
- Determine and recognize characteristics of functions.
- Determine and recognize characteristics of function families.

K5Y THRMS

function notation

- increasing function
- decreasing function
- constant function
- function family
- linear functions
- exponential functions
- absolute minimum
- absolute maximum
- quadratic functions
- linear absolute value functions
- linear piecewise functions

PROBLEM 1 A New Way to Write Something Familiar

Functions can be represented in a number of ways. An equation representing a function can be written using function notation. Function notation is a way of representing functions algebraically. This form allows you to more efficiently identify the independent and dependent quantities. The function $f(x)$ is read as " f of x " and indicates that x is the independent variable.

Let's look at the relationship between an equation and function notation.

Consider orders for a custom T-shirt shop. U.S. Shirts charges $\$ 8$ per shirt plus a one-time charge of $\$ 15$ to set a T-shirt design. The equation $y=8 x+15$ can be written to model this situation. The independent variable x represents the number of shirts ordered, and the dependent variable y represents the
 total cost of the order, in dollars.

You know this is a function because for each number of shirts ordered (independent value) there is exactly one total cost (dependent value) associated with it.

Turn to Page 38

PROBLEM 2 Up, Down, or Neither?

In the previous lesson, you determined which of the given graphs represented functions. Gather all of the graphs from the previous lesson that you identified as functions.

A function is described as increasing when the dependent variable increases as the independent variable increases. If a function increases across the entire domain, then the function is called an increasing function.

A function is described as decreasing when the dependent variable decreases as the independent variable increases.
If a function decreases across the entire domain, then the function is called a decreasing function.

If the dependent variable of a function does not change or remains constant over the entire domain, then the function is called a constant function.

Turn to Page 47

Deflnition

The family of exponential functions includes functions of the form $f(x)=a \cdot b^{x}$, where a and b are real numbers, and b is greater than 0 but not equal to 1 .

Graphical Behavior

Increasing / Decreasing / Constant:
Increasing or decreasing over
the entire domain

Maximum / Minimum:

No maximum or minimum
point
Curve / Line:
Smooth curves

Example

$f(x)=2^{x}$,
where \boldsymbol{x} is an integer
Domain: all integers

