Play Ball!

2.5

Absolute Value Equations and Inequalities

LEARNING GOALS

In this lesson, you will:

- Understand and solve absolute values.
- Solve linear absolute value equations.
- Solve and graph linear absolute value inequalities on number lines.
- Graph linear absolute values and use the graph to determine solutions.

KEY TERMS

- opposites
- absolute value
- linear absolute value equation
- linear absolute value inequality
- equivalent compound inequalities

PROBLEM 1 Opposites Attract? Absolutely!

-

1. Analyze each pair of numbers and the corresponding graph.
a. -2 and 2

b. $-\frac{2}{3}$ and $\frac{2}{3}$

How far is each number from " 0 " on the number line?
c. -1.5 and 1.5

2. Describe the relationship between the two numbers.

The two numbers are opposites, 1 is positive $(+)$ and 1 is negative (-).
3. What do you notice about the distance each point lies away from zero on each number line?

Each pair of numbers is the same distance from 0 .

Two numbers that are an equal distance, but are in different directions, from zero on the number line are called opposites. The absolute value of a number is its distance from zero on the number line.
4. Write each absolute value.
a. $|-2|=$ \qquad

$$
|2|=2
$$

b. $\left|-\frac{2}{3}\right|=\underline{\frac{2}{3}}$
c. $|-1.5|=1.5$

$$
\begin{aligned}
& \left|\frac{2}{3}\right|=\frac{\frac{2}{3}}{} \\
& |1.5|=1.5
\end{aligned}
$$

5. What do you notice about each set of answers for Question 4 ?

All the numbers are positive.
The absolute value sign makes positive and negative numbers POSITIVE.

6. Determine the value of each. Show your work.
a. $|3-8|$
b. $|3|-|8|$
c. $|4(5)|$

$$
|-5|=5
$$

$$
3-8=-5
$$

$$
|20|=20
$$

d. $|-4| \cdot|5|$
e. $\left|\frac{12}{-3}\right|$
f. $\frac{|12|}{|-3|}$
$4 \cdot 5=20$
$|-4|=4$

$$
\frac{12}{3}=4
$$

7. Determine the solution(s) to each equation.

b. $|x|=5$
$x=5$
There is only 1 solution.
$x=5$ or $x=-5$
There are 2 solutions.
c. $|x|=-5$
d. $|x|=0$

a. $x=5$
$x=0$
No solution.
Absolute values cannot be
There is only 1 solution.
