Use the simple and compound interest formula to complete the table. Round to the nearest cent.

Simple: A = P + (Pr)t

Compound: $A = P(1+r)^t$

- 1. You have \$700 to deposit into an account. The interest rate available for the account is 6%.
 - a. If it costs \$200.00 to have your savings in a compound interest account, would it make sense to use that account if you were only going to save your money for 10 years?

Quantity
Units
xpression

b. What about for 20 years?

,	Time	Simple Interest Balance	Compound Interest Balance
s			
n			
	0		
	3		
	10		
	20		

- 2. Rapperville has a population of 18,000. Its population is *increasing* at a rate of 3.2%.
 - 1) Write a function to represent the population as a function of time.
 - 2) Determine the population after each given number of years. ROUND your answer to the nearest WHOLE NUMBER.

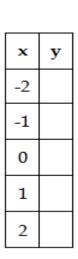
Function: $P(t) = P(1+r)^t$

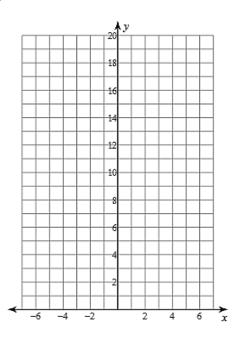
a. 2 years

b. 10 years

- c. 20 years
- 3. Doglandia has a population of 85,000. Its population is *decreasing* at a rate of 2.8%.
 - 1) Write a function to represent the population as a function of time.
 - 2) Determine the population after each given number of years. ROUND your answer to the nearest WHOLE NUMBER.

Function: $P(t) = P(1-r)^t$


a. 8 years


b. 5 years

c. 16 years

Complete the table and graph each function. List the y-intercept, asymptote, domain, and range.

3) $y = 3^x$

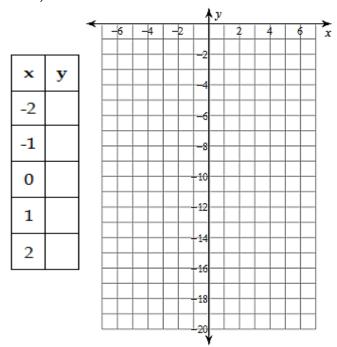
-iiitei	cept,	asym	pion	e, uo	maı	II, a	IIU I	lang	ge.		
4)) y =	$\left(\frac{1}{3}\right)$	x			20 J	,]
		1	H			18	++	+		+	-
x	y		H			16	H	+		+	1
-2 -1			H			14	H	+		+	1
-1						12					
0			H			10					
1			H			8				+	-
2						6-4-					
	<u> </u>	I				2					
							\vdash			+	

y-intercept:

asymptote:

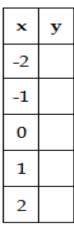
domain:

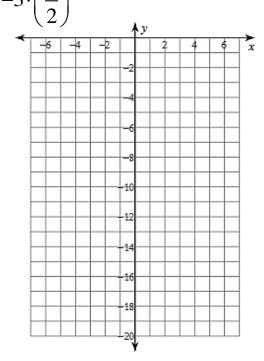
range:


y-intercept:

asymptote:

domain:


range:


5) $y = -3 \cdot 2^x$

y-intercept: asymptote:

0) y —

y-intercept:

asymptote:

domain: range: domain: range: