Downtown and Uptown Graphs of Exponential Functions

LEARNING GOALS

In this lesson, you will:

- Solve exponential functions using the intersection of graphs.
- Analyze asymptotes of exponential functions and their meanings in context.
- Identify the domain and range of exponential functions.
- Analyze and graph decreasing exponential functions.
- Compare graphs of linear and exponential functions through intercepts, asymptotes, and end behavior.

KEY TERM

- horizontal asymptote

PROBLEM 1 Downtown and Uptown

At this moment, the population of Downtown is 20,000, and the population of Uptown is 6000 . But over many years, people have been moving away from Downtown at a rate of 1.5% every year. At the same time, Uptown's population has been growing at a rate of 1.8% each year.

1. What are the independent and dependent quantities in each situation?

Independent Quantity (IQ): time (years) Dependent Quantity (DQ): population
2. Which city's population can be represented as an increasing function, and which can be represented as a decreasing function?

Uptown: Increasing function Downtown: Decreasing function

Let's analyze the population growth of Uptown. In 1 year from now, the population of Uptown will be

$$
6000+6000(0.018)=6108 .
$$

The population will be 6108 people in Uptown 1 year from now.
3. Write and simplify an expression that represents the population of Uptown:
a. 2 years from now.
$6108+6108(0.018)=6217.944$
The population will be about 6218 people 2 years from now.
b. 3 years from now.
$6217.944+6217.944(0.018)=6329.866992$
The population will be about 6330 in 3 years from now.
4. How can you tell that this function is an exponential function? Explain your reasoning. Uptown's population is not growing at a constant, but it is increasing each year.
$1^{\text {st }}$ year: $6108-6000=108$ more people
$2^{\text {nd }}$ year: $6218-6108=110$ more people
$3^{\text {rd }}$ year: $6330-6218=112$ more people
You can use the formula for compound interest to determine the function for Uptown's increasing population. Recall that the formula for compound interest is $P(t)=P(1+r)^{t}$, where $P(t)$ represents the amount in the account after a certain amount of time in years, r is the interest rate written as a decimal, and t is the time in years.
5. In the compound interest formula, substitute Uptown's starting population for P and the rate of population growth for r.
a. Write the function, $U(t)$, showing Uptown's population growth as a function of time in years.

$$
U(t)=6000(1+0.018)^{t} \quad U(t)=6000(1.018)^{t}
$$

Add when the population increases.
b. Use your answers to Question 3 and a calculator to verify that your function is correct. $U(t)=6000(1.018)^{t}$

$$
\begin{array}{cc}
U(t)=6000(1.018)^{2} & U(t)=6000(1.018)^{3} \\
U(t) \approx 6218 & U(t) \approx 6330
\end{array}
$$

Now let's analyze the population decline of Downtown.
6. Write and simplify an expression that represents the population of Downtown. The first one has been done for you.
a. 1 year from now.
$20,000-20,000(0.015)=19,700$
The population of Downtown will be 19,700 people
1 year from now.
b. 2 years from now.
$19,700-19,700(0.015)=19,404.5$
The population of Downtown will be about 19,405 people 2 years from now.

Because the
population is declining, you have to subtract the change in population each year.

c. 3 years from now.
$19,404.5-19,404.5(0.015)=19,113.4325$
The population of Downtown will be about 19,113 people 3 years from now.
7. Rewrite the expressions for the population decline in Downtown using the Distributive Property. The first one has been done for you.
a. 1 year from now.

$$
\begin{aligned}
& 20,000-20,000(0.015) \\
& 20,000(1-0.015)
\end{aligned}
$$

b. 2 years from now.

$$
\begin{aligned}
& 19,700-19,700(0.015) \\
& 19,700(1-0.015)
\end{aligned}
$$

c. 3 years from now.

$$
\begin{aligned}
& 19,404.5-19,404.5(0.015) \\
& 19,404.5(1-0.015)
\end{aligned}
$$

8. Use the compound interest formula and your expressions in Question 7 to write the function, $D(t)$, showing Downtown's population decline as a function of time in years.

$$
D(t)=20,000(1-0.015)^{t}
$$

Subtract when the population decreases.
9. Think about each function as representing a sequence. What is the common ratio in simplest form, or the number that is multiplied each time to get the next term, in each sequence?

For Uptown, the common ratio is $1+0.018$, or 1.018 . For
Downtown, the common ratio is $1-0.015$, or 0.985 .
10. Explain how the common ratios determine whether the exponential functions for the change in population are increasing or decreasing.

When the common ratio is greater than 1 , the exponential function is increasing. When the common ratio is between 0 and 1 , the exponential function is decreasing.
$r>1$, the exponential function is increasing.
$0<r<1$, the exponential function is decreasing.

