Page 313

Let the Transformations Begin!
 Translations of Linear and Exponential Functions

LEARNING GOALS

In this lesson, you will:

- Translate linear and exponential functions vertically.
- Translate linear and exponential functions horizontally.

KEY TERMS

- basic function
- transformation
- vertical translation
- coordinate notation
- argument of a function
- horizontal translation

5.3

Consider the three linear functions shown.

- $g(x)=x$
- $c(x)=(x)+3$
- $d(x)=(x)-3$

The first function is the basic function. A basic function is the simplest function of its type. In this case, $g(x)=x$ is the simplest linear function. It is in the form $f(x)=a x+b$, where $a=1$ and $b=0$.

You can write the given functions $c(x)$ and $d(x)$ in terms of the basic function $g(x)$. For example, because $g(x)=x$, you can substitute $g(x)$ for x in the equation for $c(x)$, as shown.

$$
\begin{gathered}
c(x)=(x)+3 \\
c(x)=g(x)+3
\end{gathered}
$$

1. Write the function $d(x)$ in terms of the basic function $g(x)$.

$$
d(x)=\frac{g(x)-3}{}
$$

2. Describe the operation performed on the basic function $g(x)$ to result in each of the equations for $c(x)$ and $d(x)$.
For $c(x)$, the constant, 3 , is added to $g(x)$. For $d(x), 3$ is subtracted from $g(x)$.
3. Use Desmos.com to graph each function: $g(\mathrm{x}), c(x)$, and $d(x)$.

4. Compare the y-intercepts of the graphs of $c(x)$ and $d(x)$ to the y-intercept of the basic function $g(x)$. What do you notice?
For $c(x)$, move the y-intercept of $g(x)$ UP 3 units. For $d(x)$, move the y-intercept of $g(x)$ DOWN 3 units.
5. Write the y-value of each ordered pair for the three given functions.

$g(x)=x$	$c(x)=(x)+3$	$d(x)=(x)-3$
$(-2, \underline{-2})$	$(-2, \xrightarrow{1})$	$(-2, \underline{-5})$
$\left(-1,{ }^{-1}\right)$	$(-1,2)$	$(-1, \underline{-4})$
$(0, \xrightarrow{0})$	$(0, \xrightarrow{3})$	$(0,-3)$
$(1, \xrightarrow{1})$	$(1, \xrightarrow{4})$	$(1, \underline{-2})$
$(2, \xrightarrow{2})$	$\left(2,{ }^{5}\right.$)	$(2, \underline{-1})$

6. Use the table to compare the ordered pairs of the graphs of $c(x)$ and $d(x)$ to the ordered pairs of the graph of the basic function $g(x)$. What do you notice?

The x-coordinates never change. For $c(x)$, each y-coordinate is 3 more than the y-coordinate of $g(x)$. For $d(x)$, each y-coordinate is 3 less than the y-coordinate of $g(x)$.

A vertical translation is a type of transformation that shifts the entire graph UP or DOWN.
A vertical translation affects the \boldsymbol{y}-coordinate of each point on the graph.

A vertical shift occurs when a number is added to or subtracted from the whole basic function!

Page 316

\square
Now, let's consider the three exponential functions shown.

- $h(x)=2^{x}$
- $s(x)=\left(2^{x}\right)+3$
- $t(x)=\left(2^{x}\right)-3$

In this case, $h(x)=2^{x}$ is the basic function because it is the simplest exponential function with a base of 2. It is in the form $f(x)=a \cdot b^{x}$, where $a=1$ and $b=2$.
8. Write the functions $s(x)$ and $t(x)$ in terms of the basic function $h(x)$. Then, describe the operation performed on the basic function $h(x)$ to result in each of the equations for $s(x)$ and $t(x)$.

$$
\begin{aligned}
& s(x)=\frac{h(x)+3}{h(x)-3} \\
& t(x)=\frac{h}{2}
\end{aligned}
$$

For $s(x)$, the constant, 3 , is added to $h(x)$. For $t(x), 3$ is subtracted from $h(x)$.
9. Use Desmos.com to graph each function: $h(\mathrm{x}), \mathrm{s}(x)$, and $t(x)$.

10. Compare the y-intercepts of the graphs of $s(x)$ and $t(x)$ to the y-intercept of the basic function $h(x)$. What do you notice? Are the results the same as when you compared the graphs of the linear functions in Question 4?
For $s(x)$, move the graph of $h(x)$ UP 3 units. For $t(x)$, move the graph of $h(x)$ DOWN 3 units. Yes, the results are the same as the linear function graphs.
11. Write the y-value of each ordered pair for the three given functions.

$h(x)=2^{x}$	$s(x)=\left(2^{x}\right)+3$	$t(x)=\left(2^{x}\right)-3$
$\left(-2, \frac{1}{4}\right)$	$\left(-2, \frac{13}{4}\right)$	$\left(-2,-\frac{11}{4}\right)$
$\left(-1, \underline{\frac{1}{2}}\right)$	$\left(-1, \underline{\frac{7}{2}}\right)$	$\left(-1,-\frac{5}{2}\right)$
$(0, \underline{1})$	$(0, \xrightarrow{4})$	$(0, \underline{-2})$
$(1, \underline{2})$	$(1,5)$	$(1, \xrightarrow{-1}$
$(2, \xrightarrow{4})$	$(2, \xrightarrow{7})$	$(2,1)$

12. Use the table to compare the ordered pairs of the graphs of $s(x)$ and $t(x)$ to the ordered pairs of the graph of the basic function $h(x)$. What do you notice? Are the results the same as when you compared the y-values for the linear functions in Question 6? The x-coordinates never change. For $s(x)$, each y-coordinate is 3 more than the y coordinate of $h(x)$. For $t(x)$, each y-coordinate is 3 less than the y-coordinate of $h(x)$. Yes, the results are the same as the y-values for the linear functions.
13. Explain how you know that the graphs of $s(x)$ and $t(x)$ are vertical translations of the graph of $h(x)$.

Every point on the graph of $s(x)$ is 3 units UP from the graph of $h(x)$. Every point on the graph of $t(x)$ is 3 units DOWN from the graph of $h(x)$.

