Take Some Time to Reflect

Reflections of Linear and Exponential Functions

5.4

LEARNING GOALS

In this lesson, you will:

- Reflect linear and exponential functions vertically.
- Reflect linear and exponential functions horizontally.
- Determine characteristics of graphs after transformations.

KEY TERMS

- reflection
- line of reflection

PROBLEM 1 Reflections

Consider the three exponential functions shown, where $h(x)=2^{x}$ is the basic function.

- $h(x)=2^{x}$
- $m(x)=-\left(2^{x}\right)$
- $n(x)=2^{(-x)}$

Skip to \#4. Using Desmos.com to graph the three exponential functions, sketch the graph of each function. Label each graph.

$$
h(x)=2^{x}
$$

$$
m(x)=-\left(2^{x}\right)
$$

($n(x)=2^{(-x)}$

5. Compare the graphs of $m(x)$ and $n(x)$ to the graph of the basic function $h(x)$.

What do you notice?
$m(x)=-\left(2^{x}\right)$ is reflected over the x-axis (or the line $\left.y=0\right)$.
$n(x)=2^{(-x)}$ is reflected over the y-axis (or the line $x=0$).
6. Complete the table of ordered pairs for the three given functions.

$h(x)=2^{x}$	$m(x)=-\left(2^{2}\right)$	$n(x)=2^{(-x)}$
$\left(-2, \frac{1}{4}\right)$	$\left(-2, \xrightarrow{-\frac{1}{4}}\right)$	$\left(2, \frac{1}{4}\right)$
$\left(-1, \frac{1}{2}\right)$	$\left(-1, \xrightarrow{-\frac{1}{2}}\right)$	$\left(1, \frac{1}{2}\right)$
$(0,1)$	$(0,-1)$	$\stackrel{0}{\square}$, 1)
(1, 2)	$(1,-2)$	$(-1,2)$
$(2,4)$	(2, -4)	$(-2,4)$

7. Use the table to compare the ordered pairs of the graphs of $m(x)$ and $n(x)$ to the ordered pairs of the graph of the basic function $h(x)$. What do you notice?

Comparing $h(x)$ and $m(x)$, the y-coordinates have opposite signs. Comparing $h(x)$ and $n(x)$, the x-coordinates have opposite signs.

A reflection of a graph is a mirror image of the graph about a line of reflection. A line of reflection is the line that the graph is reflected about. A horizontal line of reflection affects the y-coordinates, and a vertical line of reflection affects the x-coordinates.

Reflection about the x-axis

Vertical
Reflection

Reflection about the y-axis

Horizontal Reflection

When the
negative is on the outside of the function, like $-g(x)$, all the y-values become the opposite of the y-values of $g(x)$. The x-values remain unchanged.

Skip to Page 330, \#9.
9. Describe each graph in relation to its basic function.
a. Compare $f(x)=-\left(b^{x}\right)$ to the basic function $h(x)=b^{x}$.

The graph is reflected over the x-axis or the line $y=0$.
It is a vertical reflection because the graph flips up or down so the y-coordinates change signs (+/-).
b. Compare $f(x)=b^{(-x)}$ to the basic function $h(x)=b^{x}$.

The graph is reflected over the y-axis or the line $x=0$.
It is a horizontal reflection because the graph flips left or right so the x-coordinates change signs (+/-).

Skip to \#11.
11. Write the equation of each function after a reflection about the horizontal line $y=0$.

Then, write the equation after a reflection about the vertical line $x=0$.
a. $a(x)=5^{x}$

Reflection about $y=0: a^{\prime}(x)=-5^{x}$
Reflection about $x=0: a^{\prime \prime}(x)=5^{-x}$
b. $b(x)=-2 x^{2}$

Reflection about $y=0: b^{\prime}(x)=-(-2) x^{2}=2 x^{2}$
Reflection about $x=0: b^{\prime \prime}(x)=\underline{-2(-x)^{2}=-2 x^{2}}$
c. $c(x)=\frac{5}{4} x^{3}$

Reflection about $y=0: c^{\prime}(x)=$ \qquad

