\qquad
\qquad

Learning Goals:

Write an inequality in two variables.
Gravh an ineaualitv in two variables.

Notes

A linear inequality in 2 variables has _infinitely many solutions
The solutions are any ordered pairs (x, y) that make the inequality TRUE.
The ordered pairs are located in the shaded \qquad area of the graph and on the solid line .

Inequality Symbol	Type of Boundary Line	Shaded Area
\leq	Solid	Below the line
\geq	Solid	Above the line
$<$	Dashed	Below the line
$>$	Dashed	Above the line

Identifying Solutions of a Linear Inequality

Steps:	Is the ordered pair a solution of $\mathrm{y}>\mathrm{x}-3$?
- Replace x and y with their respective values.	1. $(1,2)$ $2>1-3$
- Simplify.	$2>-2$ true $(1,2)$ is a solution
- If the inequality is TRUE, then the ordered pair is a SOLUTION.	2. $(-3,-7)$
- If the inequality is FALSE, then the ordered	$\begin{aligned} & -7>-3-3 \\ & -7>-6 \quad \text { false } \\ & (-3,-7) \text { is not a solution } \end{aligned}$

Graphing a Linear Inequality in Two Variables

Steps:

- Write the inequality in slope-intercept form.
- Draw the boundary line. Solid or dashed?
- Shade above or below the line.
- If you are not sure what side to shade, choose a test point and see if it a solution for the inequality.

Graph each inequality in two variables.

5. $y-1 \leq 2 x$

$$
y \leq 2 x+1
$$

6. $-y<-x+2$
$y>x-2$

